Orbit equivalence for Cantor minimal Z 2 - systems
نویسندگان
چکیده
We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.
منابع مشابه
N ov 2 00 7 Orbit equivalence for Cantor minimal Z 2 - systems
We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.
متن کاملSe p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems
We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.
متن کاملAn Example of Kakutani Equivalent and Strong Orbit Equivalent Substitution Systems That Are Not Conjugate
We present an example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Introduction. The motivation for this example came from [2], in which Dartnell, Durand, and Maass show that a minimal Cantor system and a Sturmian subshift are conjugate if and only if they are Kakutani equivalent and orbit equivalent (or equivalently strong orbit equivalent for...
متن کاملA Bratteli Diagram for Commuting Homeomorphisms of the Cantor Set
This paper presents a construction of a sequence of Kakutani-Rohlin Towers and a corresponding simple Bratteli Diagram, B, for a general minimal aperiodic Z d action on a Cantor Set, X, with d 2. This is applied to the description of the orbit structure and to the calculation of the ordered group of coinvariants. For each minimal continuous Z d action on X there is a minimal continuous Z action...
متن کاملC*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems
Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...
متن کامل